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In a companion paper (Part 1, Jameson et al. J. Fluid Mech. vol. 649, 2010, 19–43), the
discovery of a new type of water bell was reported. When a vertical liquid jet impacts
on the underside of a large horizontal plate, the resulting thin film spreads radially
along the plate to an unspecified abrupt departure point, from whence it falls away
from the plate of its own accord. The departure radius of the fluid from the plate
is seen to depend strongly on the volumetric flow rate. The falling liquid may then
coalesce to form a water bell. Here we present a theoretical analysis and explanation
of this phenomenon. A force balance determining the maximum radial extension of
the thin film flow along the plate is considered as a mechanism for fluid departure
from the plate, for which an analytical model is developed. This model gives good
predictions of the measured radius of departure. When a water bell has been formed,
and the flow rate is altered, many interesting shapes are produced that depend on the
shapes at previous flow rates. We discuss the origin of this hysteresis, and also present
a leading order theory for the bell shape under a regime of changing flow rate. The
models are compared with experimental results spanning two orders of magnitude in
viscosity.

1. Introduction
A water bell is formed when an axisymmetric thin sheet of fluid falls under gravity,

and closes to trap a volume of air. These water bells were first discovered by Felix
Savart, in 1833, and interest has been revived many times up to the present day.

The discovery of a new water bell phenomenon is described in a companion paper
(Part 1, Jameson et al. 2010). A liquid jet is fired upwards, and collides with the
underside of a large horizontal plate. The liquid spreads radially in a thin layer on
the underside of the plate, until it reaches an unspecified point, where it detaches from
the surface and falls. After detachment, the liquid may fall in threads, or coalesce
to form a water bell. When the liquid sheet stabilizes to form a bell, the shape can
change dramatically as the flow rate of the impinging jet is varied. In some cases, the
bells may have greater radial dimensions towards the bottom, making them unlike

† Email address for correspondence: jsader@unimelb.edu.au



46 E. C. Button, J. F. Davidson, G. J. Jameson and J. E. Sader

Figure 1. A water bell formed on the underside of a horizontal plate. This bell was formed
using a 70 % glycerol mixture, pumped at a flow rate of 6.7 L min−1 through a jet of radius
4 mm onto a Teflon surface.

any water bells studied previously. An example of the jet impact, abrupt departure
from the solid surface and water bell shape is shown in figure 1.

In previous work, a liquid jet is directed downwards at a small circular horizontal
disk to form a water bell. The liquid spreads radially, and upon reaching the edge of
the disk, it forms a free liquid film. Surface tension forces cause this falling film to
close in on itself, trapping air inside and producing stable and interesting shapes. The
existence of these bells was revealed by Savart (1833b), and since then there have been
many contributions to their theory. Initial theories on the cohesion of liquids came
from Boussinesq (1869a ,b), the latter work containing the first theoretical analysis
of water bells. Boussinesq balanced inertial forces with the forces of surface tension
and gravity to produce a governing equation for the shape of such a bell. Inspired
by the experimental work of Hopwood (1952), a further mathematical formulation
was sought by Lance & Perry (1953). A modified Boussinesq equation was solved
numerically, for particular parameter values. By investigating a pressure difference
across the liquid film, shapes were produced that closely resembled the experiments.

The governing equation was then non-dimensionalized by Taylor (1959a), who
noticed that the shape of the bell was determined by only two parameters; one of
the terms containing gravity, and the other the pressure difference. In the case of
both these mechanisms being negligible, the solution reduces to a catenary. Benedetto
& Caglioti (1998) also derived this shape using the method of stationary action.
Detailed study into the dependence of gravity was conducted by Dumbleton (1969),
and into internal air circulation by Wegener & Parlange (1964) and Parlange (1967).
Theoretical work on the breakup of liquid sheets was conducted by Taylor (1959c),
Culick (1960), Brenner & Gueyffier (1999) and Clanet & Villermaux (2002), while the
stability of water bells themselves was studied in detail by Clanet (2001). Other types
of water bells have been studied including swirling bells (Bark et al. 1979; Gasser
& Marty 1994), reverse water bells (Engel 1966; Thoroddsen 2002; Clanet 2007),
transonic water bells (Brunet, Clanet & Limat 2004), annular liquid curtains (Jeandel
& Dumouchel 1999; Pirat et al. 2006) and polygonal water bells (Aristoff et al. 2006).
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In this paper, a theoretical model is presented for water bells formed on the
underside of an effectively infinite horizontal plate, as reported in Part 1. The flow
along the underside of the plate is considered separately to the falling film. The
independence of these two aspects of the flow is discussed. The approach of Watson
(1964) to the flow preceding a circular hydraulic jump is recalled in detail. A force
balance is used to determine the maximum radial extension of the thin film on
the underside of the plate; this is considered as a mechanism for determining the
detachment radius. Both laminar and turbulent flows are examined theoretically. The
shape of the falling film is then calculated, and connected with the top flow to create
a self-consistent theoretical model. Finally, all results are compared with experiments
in § 3.

2. Theory
Initial measurements indicate that the departure radius of the liquid from the plate

depends strongly on the flow rate of the impinging jet, but not on the shape of the
water bell itself. One particular experiment, described in detail in the companion
paper, is of importance in justifying the separation of analysis for the top flow and the
falling sheet. A water bell was formed at a constant flow rate, and air was added to
the inside of the bell using a special attachment to the nozzle. This acted to change the
shape of the water bell. The bell increased in size as air was added, and the water bell
departure angle changed substantially. Despite these transformations, the departure
radius remained constant. This leads to the important conclusion that the water bell
departure angle does not have a significant influence on the departure radius. Strong
hysteresis was observed in the water bell shape, when the flow rate was altered
from that of the initial bell formation. These hysteretic effects caused the departure
radius to change by less than 10 % for a given flow rate, and are considered to be of
secondary importance to its determination. Distinct theories are thus developed for
the departure radius and bell shape.

2.1. Departure radius

Disintegration of a radially expanding fluid sheet has been discussed previously for
sheets formed by the impact of two co-axial jets (Savart 1833a), by a single jet
impinging normally on a small finite disk to form a free moving film (Taylor 1959c)
and by drops impacting on small targets (Rozhkov, Prunet-Foch & Vignes-Adler 2002).
In these cases, flow in the horizontal film may be considered inviscid, and Taylor
(1959c) provided a condition that must be satisfied at the radius of disintegration.
Taylor considered a sheet of uniform thickness, and constructed a theory requiring a
force balance along a radial line, where force (per unit length) due to surface tension
at the edge of the film opposes the expansion. Should the fluid momentum flux be
greater than the surface tension force, the expansion will continue; otherwise the rim
of the sheet must contract. Equilibrium is achieved when these two forces are equal.
Using this argument Taylor showed that the film disintegrates when

2γ = ρhU 2, (2.1)

where γ is the surface tension, ρ the density, h the thickness of the film and U is
the velocity at the breakup point. Clanet & Villermaux (2002) formally showed an
identical result holds for films of uniform velocity and varying thickness.

This idea is now extended to the present problem: a thin film spreading on the
underside of a horizontal plate (see figure 2). The Reynolds number is large for
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Figure 2. Schematic illustration of the velocity profile through the film in the fully
developed region of flow, and opposing surface tension force. Velocity vectors are shown.

these flows, so a thin boundary layer will develop on the underside of the plate.
Consequently, the thickness h(r) and radial velocity u(r, z) both vary spatially. The
momentum flux may be found by integrating ρu2 over the thickness of the film.
The opposing surface tension force (per unit length) at the liquid–air interface has
magnitude γ , since only one moving surface is present. Thus γ will replace 2γ in
the analogy to (2.1). Since the velocity decreases with r due to viscous dissipation,
there exists a radius R at which the momentum flux is no longer larger than the
force due to surface tension, and the film can spread no further. This gives a location
for the departure point. The equilibrium between the two forces resulting from these
mechanisms leads to a condition analogous to that of Taylor:

γ =

∫ h(R)

0

ρu2(R, z) dz. (2.2)

We have considered only the steady state configuration, and not the initial wetting
of the surface. It was observed experimentally that the liquid formed a local contact
angle with the solid surface at the rim of the radial flow. This local contact angle
was dependent on the wettability of the surface. Even so, the water bell departure
radius was found to be independent of the surface, despite the formation of the local
contact angle.

The water bell departure angle, formed between the solid surface and the falling
film, was observed to have only a weak influence on the departure radius. Experiments
showed that the departure radius remained constant to within 10 % throughout the
range of possible departure angles.

While the complex flow in the vicinity of the departure point may influence the
departure radius, it is experimentally found to be a secondary effect and is ignored
to leading order. Its inclusion would require details of the corner flow, since this
separates the fully developed flow along the plate from the local contact angle. This
is not conducted here, for the above reasons.

We now have a means to find an expression for the departure radius R using the
thickness and velocity profiles found for the radial flow by Watson (1964). Since the
details of this solution are critical in the present context, a summary of the results of
Watson (1964) and their application are presented.

2.1.1. Laminar flow

From the stagnation point at jet impingement, vorticity generated at the plate
surface is swept radially downstream. Initially the boundary layer is thin, and the
undisturbed potential flow continues near the free surface. Eventually, the viscous
layer grows to contain the entire flow. To simplify matters, the flow is divided into
three distinct regions. These are shown in figure 3 and defined as follows:
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Figure 3. A schematic illustration of viscous flow regions in liquid flowing radially over the
underside of a horizontal plate (Watson 1964). Gravity is assumed to act normal to the plate.

(I) The incoming potential flow, with jet velocity U0, continuing near the free
surface;

(II) The growing boundary layer, thickness δ(r), near the solid surface, from the
stagnation point to where it engulfs the entire flow at radius r0. The total thickness
in region (II) is H (r);

(III) The fully developed region, thickness h(r), in which the boundary layer
equations describe flow throughout the film.
Importantly, the transition between these regions is continuous. However, by solving
the three problems separately and forming a composite solution, a good approximation
to this complicated problem may be found. We also observe that the free surface of the
jet prior to impingement on the top plate is parallel to the direction of flow, indicating
approximately irrotational flow (see figure 1); the zero shear stress condition at the
jet surface generates vorticity that diffuses into a thin layer near the free surface
(Batchelor 1967).

To begin, we focus on the fully developed region (III). When viscous effects are
present all the way to the free surface, the flow satisfies the boundary layer equations
(see for example Landau & Lifshitz 1959):

∂(ru)

∂r
+

∂(rw)

∂z
= 0, (2.3)

u
∂u

∂r
+ w

∂u

∂z
= ν

∂2u

∂z2
− g

dh

dr
. (2.4)

Since the problem is axisymmetric, we use a cylindrical coordinate system (r, ϕ, z).
Here u and w are, respectively, the r and z components of velocity, ν is the kinematic
viscosity and g is gravitational acceleration. The influence of gravity is small since the
thickness gradient in the radial direction of the thin film is negligible compared with
the other length scales in the flow. To quantify the relative importance of the terms
in the momentum equation, Clanet (2001) conducted an order of magnitude analysis
on the gravitational pressure and viscous terms. Using results obtained in the inviscid
limit, Clanet showed that the ratio of viscous to gravitational pressure terms ≈
8νU0r

4/(ga6), where a is the radius of the jet (see figure 3). In the current problem
ν ∼ 10−5 m2 s−1, U0 ∼ 3 m s−1 and a ∼ 5 × 10−3 m, hence this dimensionless group
exceeds 10 when r > 2a; note that this dimensionless group increases in proportion to
r4, and thus the effects of gravity diminish drastically along the plate. Consequently
viscous stresses dominate gravitational pressure, so the gravitational body force term
may be neglected in (2.4). Using this simplification, the present problem is equivalent
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to that of Watson (1964), who considered a vertical jet falling on to a flat plate.
Since the viscosity μair � μwater , the shear stress at the free surface can be neglected.
Equations (2.3) and (2.4) are then to be solved subject to

u(r, 0) = w(r, 0) = 0, (2.5)

∂u

∂z

∣∣∣∣
z=h(r)

= 0, (2.6)

Q = 2πr

∫ h(r)

0

u dz, (2.7)

where h(r) is the film thickness and Q is the volumetric flow rate. In region (III), we
search for a similarity solution of the form

u = U (r)f (η), where η =
z

h(r)
. (2.8)

U (r) is the free-surface velocity, and the boundary conditions are

f (0) = 0, f (1) = 1, f ′(1) = 0. (2.9)

Watson (1964) showed that the equation of motion (2.4) can be simplified with the
conditions (2.9) to give the differential equation

(f ′)2 = c2(1 − f 3), (2.10)

where

c =

∫ 1

0

(1 − x3)1/2dx =

√
π Γ

(
4
3

)
Γ

(
5
6

) ≈ 1.402. (2.11)

The constant volume flux condition (2.7) can then be written

rh(r)U (r) =
3
√

3c2Q

4π2
. (2.12)

Following this, the required solutions for the velocity and thickness profiles in the
fully developed region of flow (III) are

U (r) =
27c2

8π4

Q2

ν(r3 + l3)
, (2.13)

h(r) =
2
√

3π2

9

ν(r3 + l3)

Qr
, (2.14)

where l is a length constant, to be determined by the matching of solutions between
regions (I), (II) and (III) in figure 3. Watson gave a solution for f in terms of Jacobi
elliptic functions. Here we present a simplification.

A power series approximation to the solution of (2.10) on η ∈ [0, 1] is developed.
We note that f (0) = 0, and so set

f (η) = a1η + a2η
2 + a3η

3 + · · · . (2.15)

Substituting this into (2.10), and equating terms by order of η, we reach a series
representation for f :

f (η) = cη − (cη)4

8
+

(cη)7

112
− (cη)10

1792
+

3(cη)13

93184
− 37(cη)16

20873216
+ O

(
η19

)
. (2.16)

This gives a remarkably good approximation to the solution of (2.10) for η ∈ [0, 1],
the maximum absolute error being 0.005 %.
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In region (II), the flow satisfies a similarity solution

u = U0f (η′), where η′ =
z

δ(r)
, (2.17)

and the thickness of the growing boundary layer is

δ(r) =

( √
3πc3

π − c
√

3

a2νr

Q

)1/2

≈ 4.585

(
a2νr

Q

)1/2

. (2.18)

The total thickness in regions (I) and (II) is

H (r) =
a2

2r
+ δ(r)

(
1 − 2

√
3π

9c2

)
. (2.19)

Finally, Watson showed that the boundary layer first contains the entire flow at

r0 =

(
9
√

3c(π − c
√

3)

16π3

a2Q

ν

)1/3

≈ 0.3156

(
a2Q

ν

)1/3

, (2.20)

and that

l =

(
9
√

3c(3
√

3c − π)

16π3

a2Q

ν

)1/3

≈ 1.798 r0. (2.21)

For the dimensions of our problem, r0 is typically much less than the radius at which
the film leaves the solid surface, and hence viscous effects are important in nearly the
entire flow. This concludes the findings of Watson (1964) for laminar flow.

For r < r0 the boundary layer thickness is given by (1.18), and the total film
thickness by (2.19). For r > r0, this thickness varies according to (2.14). The velocity
in the inviscid region (r < r0, z > δ(r)) is U0, and in the boundary layer is given by
u = U (r)f (η). Here U (r) = U0 for r < r0, and is otherwise defined in (2.13). Recall
that f is given by (2.16), and finally the transition point r0 by (2.20).

Critical radius (laminar flow)

These results are now used to solve (2.2). Since R 	 r0 in practice, the departure
radius occurs in the fully developed region (III). This leads to

γ =

∫ h(R)

0

ρU 2(R)f 2(η)dz = ρU 2(R)h(R)

∫ 1

0

f 2(η)dη. (2.22)

Using the differential equation (2.10), the integral may be evaluated as∫ 1

0

f 2(η)dη =
1

c

∫ 1

0

f 2√
1 − f 3

df =
2

3c
. (2.23)

Substituting (2.23) into (2.22) then yields the required condition for the departure
radius:

R
(
R3 + l3

)
=

27
√

3c3ρQ3

16π6νγ
≡ λ. (2.24)

While an analytic solution exists for (2.24), it is complicated in nature, and gives little
information on the importance of the many parameters. For this reason, we consider
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Figure 4. Comparison of asymptotic and exact solutions to (2.25).

two asymptotic limits. With R∗ defined by R = λ1/4R∗, (2.24) becomes

R∗ (
R∗3 + ε3

)
= 1, where ε =

l

λ1/4
. (2.25)

This equation now contains only one parameter, and we solve this for the limiting
cases of small and large ε. Equation (2.25) has only one real, positive root. For small
ε, we expand the analytic solution to (2.25) as a power series in ε:

R∗ = 1 − 1

4
ε3 − 1

32
ε6 + O

(
ε12

)
. (2.26)

For ε 	 1, we expand the same solution as a power series in ε−1:

R∗ = ε−3 − ε−15 + O
(
ε−27

)
. (2.27)

Since both expansion parameters are small, we make an approximation by truncating
the two series to order 3. Note the two solutions for R∗ intersect when ε = 21/3. Thus
we form the (approximate) composite solution

R∗ ≈

⎧⎪⎨
⎪⎩

1 − 1

4
ε3 ε < 21/3,

ε−3 ε � 21/3.

(2.28)

Further analysis shows the error in choosing the composite solution is no more than
6.8 % for all values of ε (see figure 4). The error attains a maximum for ε ∼ 21/3, and
is otherwise negligible. This accuracy is sufficient for the current purpose. Importantly,
the above solution is valid in region (III) only, i.e. R > r0. From (2.24), this corresponds
to ε � 1.113, and the first solution is chosen; this parameter range is typical for our
problem. Thus, we obtain the following result for the water bell departure radius:

R = λ1/4

(
1 − 1

4

(
l

λ1/4

)3

+ O

((
l

λ1/4

)6
))

. (2.29)
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Since l/R � 1 for the flows we consider, we neglect l3 in (2.29), which then leads
to an excellent approximation for the departure radius. We thus observe the zeroth
order term, denoted R0, is given by

R0 =

(
81c3

16
√

3π6

ρQ3

νγ

)1/4

≈ 0.3025

(
ρQ3

νγ

)1/4

. (2.30)

This result predicts that the departure radius R ∝ Q3/4, to leading order.
It is interesting to note that if we define R̂ = R/a, where a is the jet radius, the

asymptotic limits for the departure radius may be expressed in dimensionless form:

R̂ ∼ 0.0507 We, R � l,

R̂ ∼ 0.3025 (ReWe)1/4, R 	 l,

}
(2.31)

where the Reynolds and Weber numbers are given respectively by

Re =
Q

aν
, We =

ρQ2

a3γ
. (2.32)

We emphasize that the R � l result is not obtained from (2.30), but from a re-
analysis using the inviscid flow in region (I), and shows the departure radius results
from the competition between inertia and surface tension; this is not the case typically
encountered, as mentioned above. When R 	 l, the boundary layer contains the entire
film thickness and the departure radius is determined from competition between inertia
and the combined effects of viscosity and surface tension. Importantly, it is the latter
case that applies to the water bells described in Part 1.

2.1.2. Turbulent flow

We now investigate the case of turbulent flow. Using the stability analysis of Lin
(1945), Watson (1964) found that the flow along the plate will be laminar provided the
local Reynolds number Re1 = Uδ1/ν < 275, where δ1 is the displacement thickness of
the boundary layer. This Reynolds number attains a maximum at r = r0, which is the
point where the boundary layer first comprises the entire flow. Requiring Re1 < 275
at r = r0 is equivalent to the condition Re = Q/(aν) < Rec = 2.57 × 104, since the
nozzle radius a can be directly related to the film thickness at r = r0.

For flows exceeding this critical Reynolds number, Watson examined the situation
in which the flow is turbulent along the entire plate. Following Glauert (1956), an
eddy viscosity is introduced, and a similarity solution for the velocity distribution is
constructed. This analysis proceeds in a similar fashion as that for laminar flow. As
before, the growing boundary layer contains the whole flow for r > r0, where

r0 =

[
80

(
A − 2

9

)]4/9

(224πA5)1/9

(
a8Q

ν

)1/9

≈ 1.218

(
a8Q

ν

)1/9

, (2.33)

where A =
√

πΓ (8/9)/(9Γ (25/18)) ≈ 0.239. Values of r0 from (2.33) are typically
much less than that of the water bell departure radius, so again, only the fully
developed region of flow is relevant for solving (2.2). The important results of
Watson (1964) for this region are as follows. A similarity solution for the velocity
is constructed: u = U (r)F (η), η = z/h(r), where the free-surface velocity and film
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thickness profiles are given by

U (r) =

(
100

9(14π5A5)1/4

)
Q5/4

ν1/4(r9/4 + l9/4)
, (2.34)

h(r) =

(
9k(14πA)1/4

200

)
ν1/4(r9/4 + l9/4)

Q1/4r
, (2.35)

respectively, where k =
√

πΓ (7/9)/(9Γ (23/18)) ≈ 0.260,

l =
[20(1 − 2A)]4/9

(14πA5)1/9

(
a8Q

ν

)1/9

≈ 4.126

(
a8Q

ν

)1/9

(2.36)

and F satisfies (F 6F ′)2 = k2(1 − F 9). This concludes the analysis of Watson (1964)
for turbulent flow.

Critical radius (turbulent flow)

Using these results, the criterion for maximum radial extension (2.2) becomes

γ = ρU 2(R)h(R)

∫ 1

0

F 2(η)dη =
2ρ

9k
U 2(R)h(R). (2.37)

This leads to the condition for the radius of departure from the solid surface for the
case of turbulent flow,

R(R9/4 + l9/4) =
100 ρQ9/4

81(14π9A9)1/4 γ ν1/4
≡ λ2. (2.38)

Here an analytic solution is not possible. As for the laminar case, a leading order
solution is presented,

R0 =

(
108

316(14π9A9)

ρ4Q9

γ 4ν

)1/13

≈ 1.062

(
ρ4Q9

γ 4ν

)1/13

. (2.39)

This approximation is valid when l � R, which we expect since O(l) ∼ O(r0), c.f.
(2.33) and (2.36). The error in taking this leading order term instead of the numerical
solution to (2.38) is less than 10 % provided l/R < 0.67; a condition that is satisfied
in practice. This result indicates that for turbulent flow the leading order dependence
of water bell departure radius on flow rate is R ∝ Q9/13 ∼ Q0.69. Interestingly, the
dependence on flow rate is slightly weaker for the case of turbulent flow in comparison
with laminar flow, which yielded R ∝ Q0.75.

In dimensionless form, the asymptotic limits for the departure radius in the case of
turbulent flow become

R̂ ∼ 0.0507 We, R � l,

R̂ ∼ 1.0621 (ReWe4)1/13, R 	 l,

}
(2.40)

where the Reynolds and Weber numbers are given by (2.32). Note that the inviscid
solution for R � r0, i.e. region (I), is identical to (2.31), as expected and required.
Interestingly, (2.40) shows that the dominant physical mechanisms for R 	 l, i.e.
region (III), are also similar to the case of laminar flow, (2.31), albeit to a different
degree.
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Figure 5. Schematic of water bell surface.

2.2. Bell shape

We now investigate the shape of the liquid curtain using standard inviscid water bell
theory (Boussinesq 1869b).

The theory is derived with reference to figure 5, and consists of a force balance
normal to the stream. By considering the forces resulting from (i) gravity, (ii) pressure
difference across the surface of the bell and (iii) surface tension, Boussinesq derived
the equation

2γ

(
cos ψ

y
− dψ

ds

)
+ ρgt sinψ − �p + ρtu2 dψ

ds
= 0, (2.41)

where γ is the surface tension, ρ the density, g the gravitational acceleration, u the
fluid velocity and �p = pin − pout is the pressure difference across the thin film. The
latter is assumed to be constant and uniform. For effects of internal air circulation,
see Parlange (1967). Here y(z) is the distance from the bell surface to the z-axis, and
ψ , s and t are defined in figure 5. The water bell angle of departure is denoted φ. For
constant flow rate Q, continuity requires

Q = 2πytu, (2.42)

for all z. Using the dimensionless variables

z̃ =
z

L
, s̃ =

s

L
, Y =

y

L
, ũ =

u

u0

, where L =
ρQu0

4πγ
, (2.43)

and u0 is the fluid velocity at the point of departure from the plate, Taylor (1959a)
showed that (2.41) becomes

cos ψ

Y
− dψ

ds̃
− α + β

sinψ

ũY
+

ũ

Y

dψ

ds̃
= 0, (2.44)

α =
ρQu0�p

8πγ 2
, (2.45)

β =
ρgQ

4πγ u0

. (2.46)

The relevant length scale for the flow, L, is inversely proportional to the surface
tension, hence larger surface tension will result in larger curvature in the water bell
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shape. Notice that (2.44), and hence the path taken by the falling film, depends
only upon two dimensionless parameters, α and β . The pressure difference �p enters
the governing equation only through α, while the β term accounts for gravity.
Equation (2.44) can be further simplified by noting Y ′(z̃) = tan ψ , which leads to

Y ′′(ũ − Y ) +
(
1 +

(
Y ′)2

) (
1 +

β

ũ
Y ′

)
− αY

(
1 +

(
Y ′)2

)3/2

= 0. (2.47)

This is to be solved with the initial conditions

Y (0) = R/L, (2.48)

Y ′(0) = 1/ tan φ, (2.49)

where φ is the angle of departure from the plate, and R is the departure radius.
Note that the surface of the liquid film is itself a streamline, as well as a surface of

constant pressure. The Bernoulli equation u2 = u2
0 + 2gz in dimensionless form is

ũ2 = 1 + 2βz̃, (2.50)

where β is given by (2.46). This relation, together with (2.47)–(2.49) provides the
governing equations for the falling sheet. We now consider the relative importance
of gravity and pressure. Using typical dimensions of the bell, the Froude number
u0/(gR)1/2 is O(1). Thus the gravitational and inertial forces are comparable, and
hence the β term must be retained. Experiments show the bell can be made to form
a perfect cylindrical shape. In this case, all derivatives of Y with respect to z̃ vanish,
and (2.47) reduces to αY = 1. Clearly, in this case α is non-zero. Thus the analytic
solution presented by Taylor (1959a) to (2.47)–(2.50), for the case α = β = 0 is not
applicable. Instead, we consider a leading order asymptotic theory, and the numerical
solution.

2.2.1. Strong gravity approximation

Recall the force balance equation (2.41). Using the geometric relation y ′(z) = tan ψ ,
this can be written as

− 2γ y ′′(
1 + (y ′)2

)3/2
+

2γ

y
√

1 + (y ′)2
+

ρgt y ′√
1 + (y ′)2

− �p = − ρtu2y ′′(
1 + (y ′)2

)3/2
. (2.51)

An appropriate scale for y is y ∼ R, where R is the radius of departure from the
plate. The thin fluid film attached to the horizontal plate near radius R acts as a
reservoir for the falling film. We consider a gravity dominated flow, i.e. gravitational
forces are much larger than those due to surface tension. In this limiting case, we
expect the fluid to ‘fall’ approximately vertically, and hence the length scale for z will
be very large compared to R, the length scale for y. We therefore scale z ∼ Λ, where
Λ 	 R. Scaling (2.51) reveals

2γ

(
R

Λ

)2

(
1 +

(
R

Λ

)2
)3/2

+
2γ√

1 +

(
R

Λ

)2
+

ρgtR

(
R

Λ

)
√

1 +

(
R

Λ

)2
+�pR ∼

ρtu2

(
R

Λ

)2

(
1 +

(
R

Λ

)2
)3/2

. (2.52)

Importantly, Λ 	 R implies (R/Λ)2 � 1, and hence the first term on the left-hand
side, and the term on the right may be neglected in this strong gravity limit. The
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nonlinearities appearing in the denominators may also be removed for the same
reason. Equation (2.52) then reduces to

2γ

R
+

ρgtR

Λ
+ �p ∼ 0. (2.53)

Balancing the first and second terms gives

2γ

ρgtR
∼ R

Λ
� 1. (2.54)

Thus the strong gravity limit formally corresponds to this inequality. Physically this
means that the pressure difference across the film 2γ /R is much less than the gravity
pressure difference ρgt due to the film thickness. We keep only the terms in (2.51)
equivalent to those in (2.53). The equation is again scaled using the dimensionless
variables (2.43), and an approximation to the governing equation is formed. In the
strong gravity limit, Y ′ and Y ′′ being small, (2.47) reduces to

1 +
β

ũ
Y ′(z̃) − αY (z̃) = 0. (2.55)

Since the order has been reduced, we now need only one initial condition, the
departure point R/L, which is specified by (2.29). As we shall see below, this is a
valid simplification in this limit.

From the results of § 2.1, we determine the initial dimensions of the falling film.
The velocity is considered constant across the thickness of the film, and the initial
velocity is denoted u0. Consider the bounding free streamline close to the departure
point. The kinetic energy of a fluid particle at the surface must be conserved around
the corner on this streamline, i.e.

u0 = U (R), (2.56)

where U and R are given by (2.13) and (2.29), respectively. We neglect the transition
region of flow between the horizontal radial flow and the point in the descending film
where uniform velocity is achieved across the film thickness t . Eliminating Q from
(2.12) and (2.42) then gives the initial film thickness:

t(0) =
2π

3
√

3c2
h(R). (2.57)

The shape of the falling sheet may now be calculated. The solution to (2.55), in
dimensional form, is

y(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R +
u2

0

3βg

[
1 −

(
1 +

2g

u2
0

z

)3/2
]

, α = 0,

βu2
0

αg
+

(
R − βu2

0

αg

)
exp

[
− α

3β2

(
1 −

(
1 +

2g

u2
0

z

)3/2
)]

, α 
= 0.

(2.58)

This solution is formally valid in the asymptotic limit of strong gravity, as specified
in (2.54). The α = 0 case is appropriate when �p = 0, i.e. the inside of the bell is
vented to atmosphere.

2.2.2. Numerical solution

The ‘exact’ bell shape is obtained using the method of Brunet et al. (2004). This
relies on a comparison between the fluid velocity and the ‘sonic’ velocity, defined
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to be

us =

√
2γ

ρt
. (2.59)

This is not only the velocity of antisymmetrical waves propagating on a fluid sheet
(Taylor 1959b), but also that of the receding edge of a punctured sheet (Culick
1960).

For the bells in question, calculations show that when the fluid departs the plate, its
velocity is ‘subsonic’. Since the velocity increases as the fluid falls, a sonic point exists.
In dimensionless variables, this point occurs when Y = ũ, and here (2.47) reduces to
an algebraic condition for the derivative:

1 +
β

ũ
Y ′∗ − αũ

√
1 + Y ′∗2 = 0, (2.60)

where Y ∗ denotes the value of the function, and Y ′∗ the gradient of the function at
the sonic point. Since the initial departure point is known to be R/L, (2.47) may be
solved by initially guessing z̃∗, the sonic point. Y (z̃∗) = ũ is then immediately specified,
and Y ′(z̃∗) can be calculated. Once these two quantities are known, the governing
equation may be solved back to z = 0, and tested against the initial condition. An
iterative shooting method then gives a full numerical solution to (2.47).

2.2.3. Changing flow rate

When the fluid leaves the plate for the first time, the film has not yet coalesced to
form a bell. No air is cut off from the atmosphere until the sheet is complete, and
so in this case there is no pressure difference across the surface of the bell. While we
hold Q at the initial flow rate, �p = 0, and hence α = 0 for the constant flow rate
problem.

The most interesting shapes are produced when, after the bell has been formed, the
flow rate is altered (see Part 1). For an increased flow rate, the radius of departure R

occurs further from the impact point of the jet and the film is observed experimentally
to creep up the central pipe. While decreasing Q reduces R, the bottom of the bell
expands radially. Here, we aim to predict the evolving bell shape, for varying flow
rates, given an initial flow rate.

When the bell is initially formed, a fixed amount of gas is trapped by the flowing
film. The mass of air inside the bell must therefore be conserved. We now estimate
the pressure difference �p across the film. Recall that the bell can be made to form
a perfect cylinder with vertical sides. In this case, (2.47) reduces to α = L/R, or

�p =
2γ

R
, (2.61)

which for these bells is of the order of 1 Pa. Clearly, the pressure change induced here
is negligible compared to atmospheric pressure. Thus, to leading order, the gas can be
considered incompressible and conservation of mass immediately implies conservation
of volume.

As the flow rate changes, so too does R. For all flow rates, the correct bell shape
must satisfy (2.55), (2.50), the initial condition Y (0) = R/L and conserve its internal
volume. The following method is used to determine the evolving bell shape. Note that
in the following y(z) may refer to either the strong gravity approximation (2.58), or
to the numerical solution of (2.47).
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Method of solution

(i) The bell is first formed: set �p = 0, i.e. α = 0, and solve for the initial shape
y(z).

(ii) Calculate the internal volume

V =

∫ zc

0

π
[
y2(z) − P 2(z)

]
dz, (2.62)

where P (z) is the radial dimension of the pipe at height z, and zc is defined to be (a)
the point the film intersects the pipe, if it does, or (b) the total height of the bell if it
does not intersect the pipe.

(iii) Alter the flow rate. This results in a new initial condition Y (0) = R/L, through
the dependence of R on Q. We initially provide an estimate for α = ᾱ. Let Yᾱ(z̃) be
the result obtained by setting α = ᾱ in (2.47) and solving, and yᾱ(z) its dimensional
form.

(iv) Define the volume as a function of ᾱ:

V (ᾱ) =

∫ zcᾱ

0

π
[
y2

ᾱ(z) − P 2(z)
]
dz, (2.63)

where zcᾱ
is defined in the same way as zc.

(v) Numerically find ᾱ such that V (ᾱ) = V .
(vi) The solution from step (v) is the required α for volume conservation. The

correct bell shape is then given by yα(z). Once α has been determined, (2.45) may be
rearranged allowing the resultant pressure difference to be calculated.

If the conditions at which a bell is originally formed are known, this algorithm
allows us to determine the bell shape as it changes with flow rate.

3. Comparison with experimental results
The theoretical predictions of § 2 are now compared with experimental results.

Departure radius and bell shape were measured for a variety of flow rates and
conditions, using three different fluids – two glycerol–water mixtures (70–30 and 90–
10 w/w) and a Triton X-100 solution. Details of the experiments are presented in the
companion paper (Part 1).

3.1. Departure radius

For each of the liquids, measurements of the radius at which the liquid departed the
plate were taken at a range of flow rates. These results are discussed below.

The Reynolds number Re = Q/(aν) was calculated for each of the three liquids.
It was found that 102 < Re < 103 for the 90–10 (w/w) glycerol–water mixture,
103 < Re < 104 for the 70–30 (w/w) glycerol–water mixture and 104 < Re < 105 for
the Triton X-100 solution. As stated in § 2.1.2, it is expected that the flow should be
laminar provided Re < Rec = 2.57 × 104. Under this criterion, both glycerol–water
flows will be laminar throughout, while the experiments using surfactant solution
took place in the transition regime between laminar and turbulent flow.

Figure 6 shows the laminar theory compared with experimental measurements of
the departure radius R for each of the three fluids. The experimental data have been
scaled and compared with the leading order laminar flow theory, (2.30). As can be
seen, (2.30) captures the experimental behaviour very well, even though the viscosity
was varied by two orders of magnitude. In all cases, the radius of the impinging
jet was 4 mm. This theory contains no fitting parameters. It is significant that the
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Figure 6. Departure radius as a function of flow rate: comparison of (2.30) (leading order
theory) with experimental results. Liquid properties are presented in table 1 of Part 1.

relationship between departure radius and flow rate, R ∝ Q3/4, is accurately captured.
In Part 1, a dimensional analysis of the experimental data was performed, suggesting
the empirical relation

R = 0.31

(
ρ0.26Q0.74

γ 0.26ν0.23

)
. (3.1)

This is remarkably close to the rigorous theoretical result given by (2.30), and provides
further support for its validity. The leading order expression for the critical radius
is independent of the diameter of the impinging jet, in agreement with experimental
results (Part 1, Jameson et al. 2010).

Figure 7(a) gives a comparison between both the laminar and turbulent theories and
experimental data for the Triton X-100 solution. In this case, the Reynolds number
suggests the flow may be turbulent. The turbulent approximation given by (2.39),
the numerical solution to (2.38) and the laminar result equation (2.30), give similar
agreement with experimental measurements, although the laminar solution appears
to be slightly closer to the data; possibly due to the turbulent motion not being fully
developed. The close agreement between laminar and turbulent theories is fortuitous,
and perhaps due to the measurements lying within the transition regime between
laminar and turbulent flow. Rippling of the film surface was observed experimentally
in some cases, suggesting the presence of turbulence.

It was not possible to form water bells using pure water, so a surfactant solution
was used in order to obtain quantitative results for departure radius using a fluid
of relatively low viscosity. The use of surfactant raises many issues. The no shear-
stress condition at the free surface may not hold, due to non-uniform surfactant
concentration and the resulting Marangoni stresses. Most experimental results were
obtained using glycerol–water mixtures to eliminate these possible undesirable effects.
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Figure 7. Departure radius as a function of flow rate: comparison of theory for laminar and
turbulent flow with experimental results. (a) Triton X-100 solution water bells in the transition
regime, (b) 70 % glycerol mixture and (c) 90 % glycerol mixture water bells in the laminar
regime.

Importantly, such agreement between laminar and turbulent solutions was absent
for the glycerol–water mixtures (for which Re � Rec = 2.57 × 104), which were well
described by the laminar theory only. For completeness, the turbulent theoretical
predictions are shown with the experiments and laminar result in figure 7(b, c).

All experimental data described above were obtained for water bells formed at the
initial flow rate. No pressure difference existed across the surface of the bell, and no
hysteresis was observed.

3.2. Bell shape

In this section, we distinguish between water bells formed at the initial flow rate, and
bells at other flow rates where air is trapped. In the first case, no pressure difference
exists between the inside and outside of bell. In the latter case, hysteretic effects were
present.

In the first case, water bells were formed using a 70 % glycerol mixture. The surface
of the water bell was broken using a tube in order to eliminate any possible pressure
difference across the film. Photographs of the water bells were analysed to determine
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Figure 8. Predicted water bell shapes compared to experimental shapes. Water bells formed
using a 70 % glycerol mixture, 4 mm jet radius and Teflon surface at a flow rate of (a) 6.0,
(b) 10.5 L min−1.

the bell shape. The height of the water bell was divided into 0.2 mm increments,
and the radial dimension of the bell was measured at each point. Figure 8 shows
the extracted shapes compared with both the strong gravity approximation, (2.58)
and the numerical solution to (2.47). The exact solution quantitatively captures the
bell shape very well, with the approximation being less accurate while capturing the
dominant qualitative features.

A series of water bells displaying hysteretic effects were analysed for comparison
with the theory.

Case 1: A 70 % glycerol mixture was used to form a water bell at a flow rate of
8.9 L min−1. The flow rate was then increased to 13.7 L min−1. The film remained
closed throughout the experiment, trapping a fixed amount of air inside the bell. The
departure radius increased and the bottom of the water bell was observed to creep up
the central pipe as the flow rate increased, and volume appeared to be conserved. The
departure angle φ at which the fluid departed the plate became smaller as the flow
rate was increased. Eventually the pulled up film became unstable and broke. It is not
known what determines the point of instability. Figure 9 allows visual comparison
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Figure 9. Predicted water bell shapes displaying hysteresis: increasing flow rate. Water bells
formed using a 70 % glycerol mixture, 4 mm jet radius and Teflon surface. Shape extracted from
experiment – solid line, numerical solution to (2.47) – dotted line, strong gravity approximation
(2.58) – dashed line. (a) Full self-consistent model. (b) Experimental values for departure radius
used as initial conditions.

of theory to experimental shapes. The shapes were calculated using the method of
solution described in § 2.2.3.

It was observed that the departure radius was slightly dependent on the hysteresis
of the flow. This meant that while the model is able to accurately predict the departure
radius for the initial water bell in the sequence, there may be inaccuracy of up to 10 %
as the flow rate is altered from its initial value. Since the protocol for determining
water bell shape relies on volume conservation, an error in the departure radius will
affect the entire bell shape. Thus we present two sets of results: (i) the shapes in
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figure 9(a) are produced using the full self-consistent model, (ii) those in figure 9(b)
are obtained by using the experimental value for the departure radius for each bell.

Note the good agreement between the exact numerical solution and experiment in
all cases. We emphasize, the theory contains no fitting parameters, and only the flow
rate was changed between figures. At flow rates away from that of initial formation,
the theory is better able to predict the shape if the experimental value is used for
departure radius. As yet no theory exists for the effect of hysteresis on departure
radius, so we present this method as an alternative to the full model, which becomes
more inaccurate as the flow rate is modified. Even so, we note that the quantitative
difference between these two models is small.

The strong gravity approximation (2.58) is able to capture the qualitative features
and dominant behaviour of the water bells under changing flow rate. The inaccuracy
in the shapes is compounded by inaccuracy in the original volume, which then
propagates through subsequent calculations.

Equation (2.45) indicates that the pressure inside the bell was 5.4 Pa less than the
pressure outside the bell when the flow rate was 13.7 L min−1 using the numerical
solution, and 9.4 Pa less using the strong gravity approximation. These pressure
differences are negligible compared to atmospheric pressure, and so the condition of
volume conservation remains valid even for these strongly hysteretic water bells.

Case 2: A 70 % glycerol mixture was used to form another water bell at a flow
rate of 8.9 L min−1. The flow rate was then decreased to 7.0 L min−1. Again the film
remained closed throughout the experiment, trapping a fixed amount of air inside the
bell. The departure radius decreased and the bottom of the water bell was observed
to creep down the central pipe as the flow rate increased, and volume appeared to
be conserved. The departure angle φ became larger, approaching 90◦, as the flow
rate was decreased. These experimental shapes are shown in figure 10. The agreement
with theoretical shapes is similar to the case of increasing flow rate. Here, the internal
pressure was calculated to be 1.8 Pa (approximation) and 1.6 Pa (numerical) higher
than the ambient.

The numerical method described above relies on the existence of a ‘sonic’ point.
Experimentally this can be observed as the location at which a wake ceases to form
behind an obstruction in the falling fluid film. In these experiments it was not possible
to determine the location of the sonic point, since the wake disappeared at a point
very close to the solid surface, possibly having interference from the radial flow on
the underside of the plate. This means the entire water bell is supersonic apart from
a small region near the solid surface. When calculating the shapes described above, it
is necessary to determine the location of the sonic point. For all the shapes shown in
figures 9 and 10, the sonic point was calculated to be between 2.5 and 3.8 mm beneath
the solid surface, compared to a film length of 100–200 mm. These calculations are
therefore consistent with the experimental observations.

3.3. Water bell departure angle

Once the bell shape has been calculated, the water bell departure angle may be
determined using (2.49). In the case of the strong gravity approximation, this reduces
to

φ = arctan

(
αR − 1

β

)
. (3.2)

It was experimentally difficult to measure the water bell departure angle, due to the
existence of a local contact angle at the solid surface. For this reason, tangents were
drawn to the bell surface 1 cm below the horizontal plate, allowing this (macroscopic)
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Figure 10. Predicted water bell shapes displaying hysteresis: decreasing flow rate. Water bells
formed using a 70 % glycerol mixture, 4 mm jet radius and Teflon surface. Shape extracted from
experiment – solid line, numerical solution to (2.47) – dotted line, strong gravity approximation
(2.58) – dashed line. (a) Full self-consistent model. (b) Experimental values for departure radius
used as initial conditions.

water bell departure angle to be determined. In this comparison with experiments, two
calculations are shown for completeness. The theoretical departure angle calculated
at z = 0 is presented along with the angle obtained using the gradient at z = 0.01
m to be consistent with the way in which experimental data points were obtained.
Both these curves are presented in figure 11. Pressure difference across the surface of
the bell was eliminated before each measurement, to remove effects of hysteresis. The
models appear to capture the behaviour of the departure radius as a function of flow
rate. The full numerical solution does lie closer to the experimental results, but is not
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Figure 11. Departure angle as a function of flow rate: 70 % glycerol mixture,
4 mm jet radius.

appreciably more accurate. We also note that the nature of the surface (hydrophobic,
hydrophilic) does not have a visible effect on the water bell departure angle.

4. Conclusions
We have developed a theoretical model to explain the water bells formed on the

underside of an essentially infinite horizontal plate (Part 1, Jameson et al. 2010). These
water bells are produced when an upward flowing liquid jet impinges normally on
a horizontal plate from below, then spreads radially to an unspecified abrupt point
and falls. These water bells exhibit a sharp departure from the solid surface. Large
hysteretic effects are also displayed by the surface of the water bell upon change
in flow rate, and are far more pronounced than in any type of water bell reported
previously.

Experiments showed the departure radius is insensitive to the shape of the water
bell. This observation was combined with the analytical work of Watson (1964) to
calculate the radius at which the liquid leaves the horizontal plate. The leading order
expression for the radius in the case of laminar flow is

R0 =

[
81c3

16
√

3π6

ρQ3

νγ

]1/4

≈ 0.3025

(
ρQ3

νγ

)1/4

.

This equation agrees well with experimental data spanning two orders of magnitude in
fluid viscosity. An analogous equation for the case of turbulent flow is also presented,
and agrees with measurements for flows at or near the turbulent regime.

Once the flow had departed the solid surface, the shape of the resulting thin film
flow was calculated using conventional water bell theory, and subsequently married
to the theory for flow in the thin film attached to the plate. The equations were solved
(i) asymptotically in the strong gravity limit and (ii) numerically. The theory contains
no fitting parameters, and for closed water bells which trap a fixed amount of air,
captures the shape and all dominant features of the phenomenon. For open bells
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whose inside is vented to the atmosphere, and therefore volume (mass) conservation
is no longer satisfied, the shapes are also correctly predicted.

Taken as a whole, the theory yields quantitative results that compare favourably
with experiments over a wide parameter range, and describes the dominant physical
processes at work in the formation of the novel water bells reported in Part 1 (Jameson
et al. 2010).
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